Two charged particles, having same kinetic energy, are allowed to pass through a uniform magnetic field perpendicular to the direction of motion. If the ratio of radii of their circular paths is $6: 5$ and their respective masses ratio is $9: 4$. Then, the ratio of their charges will be.
$8: 5$
$5: 4$
$5: 3$
$8: 7$
An electron moving with a velocity ${\vec V_1} = 2\,\hat i\,\, m/s$ at a point in a magnetic field experiences a force ${\vec F_1} = - 2\hat j\,N$ . If the electron is moving with a velocity ${\vec V_2} = 2\,\hat j \,\,m/s$ at the same point, it experiences a force ${\vec F_2} = + 2\,\hat i\,N$ . The force the electron would experience if it were moving with a velocity ${\vec V_3} = 2\hat k$ $m/s$ at the same point is
Which of the following statement is correct :
Under the influence of a uniform magnetic field a charged particle is moving in a circle of radius $R$ with constant speed $v$. The time period of the motion
Ratio of electric and magnetic field due of moving point charge if its speed is $4.5 \times 10^{5} \;m / s$
Two ions having masses in the ratio $1 : 1$ and charges $1 : 2$ are projected into uniform magnetic field perpendicular to the field with speeds in the ratio $2 : 3$. The ratio of the radii of circular paths along which the two particles move is