Three vectors $\overrightarrow a ,\,\overrightarrow b $and $\overrightarrow c $ satisfy the relation $\overrightarrow a \,.\,\overrightarrow b = 0$ and $\overrightarrow a \,.\,\overrightarrow c = 0.$ The vector $\overrightarrow a $ is parallel to

  • [AIIMS 1996]
  • A

    $\overrightarrow b $

  • B

    $\overrightarrow c $

  • C

    $\overrightarrow b \,.\,\overrightarrow c $

  • D

    $\overrightarrow b \times \overrightarrow c $

Similar Questions

The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be

The values of $x$ and $y$ for which vectors $A =(6 \hat{ i }+x \hat{ j }-2 \hat{ k })$ and $B =(5 \hat{ i }+6 \hat{ j }-y \hat{ k })$ may be parallel are

The area of the parallelogram having diagonals ${3\hat i}\,\, + \,\,\hat j\,\, - \,\,2\hat k$ and $\hat i\,\, - \,\,3\hat j\,\, + \;\,4\hat k$ is

$\hat i.\left( {\hat j \times \,\,\hat k} \right) + \;\,\hat j\,.\,\left( {\hat k \times \hat i} \right) + \hat k.\left( {\hat i \times \hat j} \right)=$

The area of the parallelogram whose sides are represented by the vectors $\hat j + 3\hat k$ and $\hat i + 2\hat j - \hat k$ is