Three identical dice are rolled. The probability that same number will appear on each of them will be
$\frac{1}{6}$
$\frac{1}{{36}}$
$\frac{1}{{18}}$
$\frac{3}{{28}}$
Two dice are thrown. The events $A,\, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
State true or false $:$ (give reason for your answer)
Statement : $A$ and $B$ are mutually exclusive and exhaustive
A fair coin with $1$ marked on one face and $6$ on the other and a fair die are both tossed. find the probability that the sum of numbers that turn up is $3$.
The probability of getting at least one tail in $4$ throws of a coin is
The two events $A$ and $B$ have probabilities $0.25$ and $0.50$ respectively. The probability that both $A$ and $B$ occur simultaneously is $0.14$. Then the probability that neither $A$ nor $B$ occurs is
Two dice are thrown and the sum of the numbers which come up on the dice is noted. Let us consider the following events associated with this experiment
$A:$ $^{\prime}$ the sum is even $^{\prime}$.
$B:$ $^{\prime}$the sum is a multiple of $3$$^{\prime}$
$C:$ $^{\prime}$the sum is less than $4 $$^{\prime}$
$D:$ $^{\prime}$the sum is greater than $11$$^{\prime}$.
Which pairs of these events are mutually exclusive ?