સમાન મૂલ્યો ધરાવતાં ત્રણ સદિશો સમતોલનમાં હોય,તો તેમની વચ્ચેનો ખૂણો કેટલો હશે?
$120^° $
$60^° $
$30^°$
$45^°$
અલગ અલગ મૂલ્ય ધરાવતાં એક જ સમતલના કેટલા સદિશોનો સરવાળો કરતાં પરિણામી શૂન્ય મળે છે?
$a + b + c + d = 0$ આપેલ છે. નીચે આપેલ વિધાનોમાંથી ક્યું સાચું છે :
$(a)$ $a, b, c$ તથા તે દરેક શૂન્ય સદિશ છે.
$(b)$ $(a + c)$ નું મૂલ્ય $(b + d)$ ના મૂલ્ય જેટલું છે.
$(c)$ $a$ નું માન $b, c$ તથા તેના માનના સરવાળાથી ક્યારેય વધારે ન હોઈ શકે.
$(d)$ જો $a$ અને $d$ એક રેખસ્થ ન હોય તો $b+c, a$ અને $d$ વડે બનતા સમતલમાં હશે અને જો $a$ અને $b$ તે એક રેખસ્થ હોય, તો તે $a$ અને $b$ તેની રેખામાં હશે.
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ નું મૂલ્ય લઘુતમ મળે.
નીચે આપેલ કોલમ $-I$ માં સદિશો ,$\vec a \,$ $\vec b \,$ અને $\vec c \,$ વચ્ચેનો સંબંધ અને કોલમ $-II$ માં ,$\vec a \,$ $\vec b \,$ અને $\vec c \,$ સદિશો $XY$ સમતલમાં નમન સાથે દર્શાવેલ છે, તો કોલમ $-I$ અને કોલમ $-II$ ને સારી રીતે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
બે બળોના મૂલ્યોનો સરવાળો $18\;N$ અને તેમનું પરિણામી બળ $12\;N$ છે જે પરિણામી બળ નાના મૂલ્યના બળને લંબ છે. તો તે બંને બળોના મૂલ્ય કેટલા હશે?