तीन सिक्कों को एक बार उछाला जाता है। मान लीजिए कि घटना 'तीन चित्त दिखना' को $A$ से, घटना 'दो चित्त और एक पट् दिखना' को $B$ से, घटना 'तीन पट् दिखना' को $C$ और घटना 'पहले सिक्के पर चित्त दिखना' को $D$ से निरूपित किया गया है। बताइए कि इनमें से कौन सी घटनाएँ सरल हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed, the sample space is given by

$S =\{ HHH ,\, HHT , \,HTH ,\, HTT , \,THH ,\, THT , \,TTH , \,TTT \}$

Accordingly,

$A=\{H H H\}$

$B =\{ HHT ,\, HTH ,\, THH \}$

$C =\{ TTT \}$

$D =\{ HHH , \,HHT , \,HTH , \,HTT \}$

We now observe that

$A \cap B$ $=\phi, A \cap C$ $=\phi, A \cap D$ $=\{H H H\} \neq \phi$

$B \cap C=\phi, B \cap D$ $=\{H H T,\, H T H\} \neq \phi$

$C \cap D=\phi$

If an event has only one sample point of a sample space, it is called a simple event. Thus, $A$ and $C$ are simple events.

Similar Questions

एक अलमारी में $10$ जोड़ी जूते रखे हैं। इनमें से $4$ जूते यदृच्छया चुन लिये जाते हैं तो उनमें कम से कम एक जोड़ी होने की प्रायिकता है

दो पांसो को एक साथ उछाला जाता है तो दोनों का योग $7$ या $12$ आने की प्रायिकता है

$2$ पांसों पर एक साथ द्विक ($Doublet$) आने की प्रायिकता है

एक पासे के दो फलकों में से प्रत्येक पर संख्या $'1'$ अंकित है, तीन फलकों में प्रत्येक पर संख्या $' 2^{\prime}$ अंकित है और एक फलक पर संख्या $'3'$ अंकित है। यदि पासा एक बार फेंका जाता है, तो निम्नलिखित ज्ञात कीजिए

$P (3-$ नहीं $)$

तीन सिक्कों को एक बार उछाला जाता है। मान लीजिए कि घटना 'तीन चित्त दिखना' को $A$ से, घटना 'दो चित्त और एक पट् दिखना' को $B$ से, घटना 'तीन पट् दिखना' को $C$ और घटना 'पहले सिक्के पर चित्त दिखना' को $D$ से निरूपित किया गया है। बताइए कि इनमें से कौन सी घटनाएँ मिश्र हैं ?