Three coins are tossed once. Let $A$ denote the event ' three heads show ', $B$ denote the event ' two heads and one tail show ' , $C$ denote the event ' three tails show and $D$ denote the event 'a head shows on the first coin '. Which events are simple ?
When three coins are tossed, the sample space is given by
$S =\{ HHH ,\, HHT , \,HTH ,\, HTT , \,THH ,\, THT , \,TTH , \,TTT \}$
Accordingly,
$A=\{H H H\}$
$B =\{ HHT ,\, HTH ,\, THH \}$
$C =\{ TTT \}$
$D =\{ HHH , \,HHT , \,HTH , \,HTT \}$
We now observe that
$A \cap B$ $=\phi, A \cap C$ $=\phi, A \cap D$ $=\{H H H\} \neq \phi$
$B \cap C=\phi, B \cap D$ $=\{H H T,\, H T H\} \neq \phi$
$C \cap D=\phi$
If an event has only one sample point of a sample space, it is called a simple event. Thus, $A$ and $C$ are simple events.
There are $10$ pairs of shoes in a cupboard from which $4$ shoes are picked at random. The probability that there is at least one pair, is
The two events $A$ and $B$ have probabilities $0.25$ and $0.50$ respectively. The probability that both $A$ and $B$ occur simultaneously is $0.14$. Then the probability that neither $A$ nor $B$ occurs is
$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P ( A \cup B )$.
Two dice are thrown. The events $A, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
Describe the events $A$ and $B$
In a college of $300$ students, every student reads $5$ newspapers and every newspaper is read by $60$ students. The number of newspapers is