तीन धावक $A, B, C$ एक दौड़ प्रतियोगिता में भाग लेते हैं। $A$ और $B$ के जीतने की प्रायिकता $C$ के जीतने की प्रायिकता से दुगुनी है। दौड़ $A$ या $B$ द्वारा जीते जीने की प्रायिकता है
$\frac{2}{3}$
$\frac{1}{2}$
$\frac{4}{5}$
$\frac{1}{3}$
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$
यदि $A$ व $B$ दो घटनायें हैं। उनमें से ज्यादा से ज्यादा एक घटना के घटित होने की प्रायिकता है
किसी निश्चित जनसंख्या में $10\%$ मनुष्य धनी हैं, $5\%$ प्रसिद्ध है और $3\%$ धनी व प्रसिद्ध है। इस जनसंख्या में से एक व्यक्ति को यदृच्छया चुनने की प्रायिकता, जो या तो धनी या प्रसिद्ध हो लेकिन दोनों न हो, है
माना दो घटनायें $A$ व $B$ इस प्रकार हैं कि $P\,(A) = 0.3$ एवं $P\,(A \cup B) = 0.8$ यदि $A$ व $B$ स्वतंत्र घटनायें हैं तो $P(B)$ का मान है
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।