किसी पार्टी में $15$ व्यक्ति हैं तथा प्रत्येक व्यक्ति एक दूसरे से हाथ मिलाता है, तब हस्त मिलनों की कुल संख्या होगी
$^{15}{P_2}$
$^{15}{C_2}$
$15\,!$
$2\,(15\,!)$
$52$ पत्तों की एक गड्डी में से $5$ पत्तों को लेकर बनने वाले संचयों की संख्या निर्धारित कीजिए, यदि प्रत्येक संचय में तथ्यत: एक इक्का है।
$\sum_{ r =0}^{20}{ }^{50- r } C _{6}$ का मान होगा
यदि $n$ सम हो और $^n{C_r}$ का मान महत्तम हो, तो $r = $
$2 \le r \le n$ केलिए,$\left({\begin{array}{*{20}{c}}n\\r\end{array}} \right) + 2\,\left( \begin{array}{l}\,\,n\\r - 1\end{array} \right)$ $ + \left( {\begin{array}{*{20}{c}}n\\{r - 2}\end{array}} \right)$=
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
दो पत्ते लाल रंग के और दो काले रंग के है ?