There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{2}$ but not chemical $C_{1}$
Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$
Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$
From the Fig we have
$B=(B-A) \cup(A \cap B)$
and so, $\quad n( B )=n( B - A )+n( A \cap B )$
( Since $B - A$ and $A \cap B$ are disjoint .)
or $n(B - A) = n(B) - n(A \cap B)$
$ = 50 - 30 = 20$
Thus, the number of individuals exposed to chemical $C_{2}$ and not to chemical $C_{1}$ is $20 .$
A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
In a survey of $600$ students in a school, $150$ students were found to be taking tea and $225$ taking coffee, $100$ were taking both tea and coffee. Find how many students were taking neither tea nor coffee?
Let $X = \{ $ Ram ,Geeta, Akbar $\} $ be the set of students of Class $\mathrm{XI}$, who are in school hockey team. Let $Y = \{ {\rm{ }}$ Geeta, David, Ashok $\} $ be the set of students from Class $\mathrm{XI}$ who are in the school football team. Find $X \cup Y$ and interpret the set.
A survey shows that $73 \%$ of the persons working in an office like coffee, whereas $65 \%$ like tea. If $x$ denotes the percentage of them, who like both coffee and tea, then $x$ cannot be
In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?