એક અલગ કરેલા તંત્રમાં વાયુ અણુઓ દ્વારા થતું કાર્ય $W =\alpha \beta^{2} e ^{-\frac{ x ^{2}}{\alpha kT }},$, જ્યાં $x$ એ સ્થાનાંતર, $k$ બોલ્ટ્ઝમેન અચળાંક અને $T$ તાપમાન છે. $\alpha$ અને $\beta$ અચળાંક છે. $\beta$ નું પરિમાણ .........
$\left[ M L ^{2} T ^{-2}\right]$
$\left[ M L T ^{-2}\right]$
$\left[ M ^{2} L T ^{2}\right]$
$\left[ M ^{0} L T ^{0}\right]$
ઉષ્મા ઊર્જાનો રાશિ $Q$, પદાર્થને ગરમ કરવા માટે વપરાય છે તે તેના દળ $m$, તેની ચોક્કસસ ઉષ્મા ક્ષમતા $s$ અને પદાર્થના તાપમાન $\Delta T$ માં ફેરફાર પર આધાર રાખે છે. પારિમાણિક પદ્ધતિનો ઉપયોગ કરીને, $s$ માટે સૂત્ર શોધો. ($[s] = \left[ L ^2 T -\right.$ $\left.{ }^2 K ^{-1}\right]$ એ આપેલ છે.)
એક દોલન કરતા પ્રવાહી બૂંદની આવૃતિ $(v)$ બૂંદની ત્રિજ્યા $(r)$ પ્રવાહી ઘનતા $\rho$ અને પ્રવાહીના પૃષ્ઠતાણ $(s)$ પર $v=r^a \rho^b s^c$ મુજબ આધારિત હોય છે. તો $a, b$ અને $c$ ના મૂલ્યો અનુક્રમે $...........$ છે.
એક તંત્રના મૂળભૂત એકમો ઘનતા $[D]$, વેગ $[V]$ અને ક્ષેત્રફળ $[A]$ છે. તો આ તંત્રમાં બળનું પારિમાણિક સૂત્ર શું થાય?
બળ$=X/$ઘનતા સૂત્રમાં $X$ નું પારિમાણિક સૂત્ર શું થાય?