किसी आवेश $5\,\mu \,C$ को विद्युत क्षेत्र में $A$ बिन्दु से $B$ बिन्दु तक ले जाने में किये गये कार्य का मान $10\,mJ$ है, तब $({V_B} - {V_A})$ का मान होगा
$+ 2\,kV$
$-2\, kV$
$+ 200\, V$
$-200\, V$
चित्र में आतंरिक (छायांकित) क्षेत्र $A$ एक $r_{-1}=1$ त्रिज्या के गोले को प्रदर्शित करता है, जिसके अन्दर विधुत आवेश घनत्व (electrostatic charge density) $\rho_{-1}=k r$ केंद्र से त्रिज्य-दूरी $r$ के साथ बदलता है, जहां $k$ धनात्मक है। $r_B$ त्रिज्या के बाह्य (outer) गोलीय खोल $B$ में, विधुत आवेश घनत्व $\rho_B=\frac{2 k}{r}$ से बदलता है। मान लें कि यूनिट्स का ध्यान रखा गया है। सभी भौतिकी मात्रायें (quantities) SI मानक में है।
निम्न में से कौन सा (से) कथन सही है (हैं)।
दो एकसमान धनावेश प्रत्येक $ 1\,\mu C$ वायु में एक दूसरे से $1\, m$ की दूरी पर स्थित है। इस निकाय की स्थितिज ऊर्जा होगी
एक धातु में इलेक्ट्रानों का माध्य मुक्त पथ $4 \times 10^{-8} \;m$ है। वह विद्युत-क्षेत्र जो धातु में किसी इलेक्ट्रॉन को औसत रूप में $2\;eV$ की ऊर्जा प्रदान कर सके, $V/m$ की मात्रकों में होगा
एक ऋणात्मक आवेश को पृथ्वी की सतह से ऊपर ले जाने में स्थितिज ऊर्जा में परिवर्तन होगा
एक बिन्दु आवेश $q$ को $r$ त्रिज्या वाले एक वृत्त में $Q$ आवेश के चारों ओर घुमाने में किया गया कार्य होगा