${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ this system of equations has

  • A

    Infinite solution

  • B

    No solution

  • C

    Unique solution

  • D

    None of these

Similar Questions

The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has

The determinant $\left| {\begin{array}{*{20}{c}}{\cos \,\,(\theta \, + \,\phi )}&{ - \,\sin \,\,(\theta \, + \,\phi )}&{\cos \,2\phi }\\{\sin \,\theta }&{\cos \,\theta }&{\sin \,\phi }\\{ - \,\cos \,\theta }&{\sin \,\theta }&{\cos \,\phi }\end{array}} \right|$ is :

The system of equations $(\sin\theta ) x + 2z = 0$ , $(\cos\theta ) x + (\sin\theta )y = 0$ , $(\cos\theta )y + 2z = a$ has

The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is

Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(-2,0),(0,4),(0, \mathrm{k})$