Find values of $x$ for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution We have $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

i.e.    $\quad 3-x^{2}=3-8$

i.e.    $x^{2}=8$

Hence    $x=\pm 2 \sqrt{2}$

Similar Questions

For the system of linear equations $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$, which one of the following statements is NOT correct ?

  • [JEE MAIN 2023]

If $1,\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ is equal to

  • [AIEEE 2003]

Prove that the determinant $\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of $\theta$

Let for any three distinct consecutive terms $a, b, c$ of an $A.P,$ the lines $a x+b y+c=0$ be concurrent at the point $\mathrm{P}$ and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations $ x+y+z=6, $ $ 2 x+5 y+\alpha z=\beta$ and $x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^2$ is equal to________.

  • [JEE MAIN 2024]

The value of the determinant$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$is equal to