The value of ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9$ is
$1$
$2$
$3$
$4$
Logarithm of $32\root 5 \of 4 $ to the base $2\sqrt 2 $ is
If ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then
Solution set of equation
$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is
The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is
If $x = {\log _3}5,\,\,\,y = {\log _{17}}25,$ which one of the following is correct