The value of $1.999 ....$ in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0,$ is
$\frac{19}{10}$
$2$
$\frac{1999}{1000}$
$\frac{1}{9}$
Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$ :
$0.00323232 \ldots$
The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to
If $\frac{5+3 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3},$ find the value of $a$ and $b$
Insert a rational number and an irrational number between the following:
$2$ and $3$
If $a=2+\sqrt{3},$ then find the value of $a-\frac{1}{a}$