The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to

  • A

    $8$

  • B

    $\sqrt{2}$

  • C

    $4$

  • D

    $2$

Similar Questions

If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.

Multiply $3 \sqrt{7}$ and $5 \sqrt{7}$.

Classify the following numbers as rational or irrational with justification:

$(i)$ $\sqrt{\frac{9}{27}}$

$(ii)$ $\frac{\sqrt{28}}{\sqrt{343}}$

Rationalise the denominator of the following:

$\frac{16}{\sqrt{41}-5}$

Simplify

$\frac{11^{\frac{1}{3}}}{11^{\frac{1}{5}}}$