The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to
$8$
$\sqrt{2}$
$4$
$2$
If $\sqrt{5}=2.236,$ then evaluate $\frac{4-\sqrt{5}}{\sqrt{5}}$ correct to four decimal places.
Multiply $3 \sqrt{7}$ and $5 \sqrt{7}$.
Classify the following numbers as rational or irrational with justification:
$(i)$ $\sqrt{\frac{9}{27}}$
$(ii)$ $\frac{\sqrt{28}}{\sqrt{343}}$
Rationalise the denominator of the following:
$\frac{16}{\sqrt{41}-5}$
Simplify
$\frac{11^{\frac{1}{3}}}{11^{\frac{1}{5}}}$