The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to
$8$
$\sqrt{2}$
$4$
$2$
Prove that
$\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a}=1$
Represent geometrically numbers on the number line:
$\sqrt{2.3}$
Find the value
$64^{\frac{5}{6}}$
Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.
$\frac{1}{\sqrt{3}+\sqrt{2}}$
State whether each of the following statements is true or false
$(-1)^{11}=-1$