The value of $\frac{\sqrt{32}+\sqrt{48}}{\sqrt{8}+\sqrt{12}}$ is equal to

  • A

    $8$

  • B

    $\sqrt{2}$

  • C

    $4$

  • D

    $2$

Similar Questions

Prove that

$\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a}=1$

Represent geometrically numbers on the number line:

$\sqrt{2.3}$

Find the value

$64^{\frac{5}{6}}$

Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236,$ upto three places of decimal.

$\frac{1}{\sqrt{3}+\sqrt{2}}$

State whether each of the following statements is true or false

$(-1)^{11}=-1$