$\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right) \text { का मान }$ है

  • [JEE MAIN 2020]
  • A

    $\frac{1}{4}$

  • B

    $\frac{1}{\sqrt{2}}$

  • C

    $\frac{1}{2\sqrt{2}}$

  • D

    $\frac{1}{2}$

Similar Questions

$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $

यदि $A + B + C = \pi ,$ तो $\frac{{\cos A}}{{\sin B\sin C}} + \frac{{\cos B}}{{\sin C\sin A}} + \frac{{\cos C}}{{\sin A\sin B}} = $

$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $

यदि $\tan \frac{\theta }{2} = t,$ तब $\frac{{1 - {t^2}}}{{1 + {t^2}}}$ का मान होगा

$\sin {20^o}\,\sin {40^o}\,\sin {60^o}\,\sin {80^o} = $