$\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right) \text { का मान }$ है
$\frac{1}{4}$
$\frac{1}{\sqrt{2}}$
$\frac{1}{2\sqrt{2}}$
$\frac{1}{2}$
निम्नलिखित को सिद्ध कीजिए
$\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$
$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} , \,\,($ जब $x \, \in $ द्वितीय चतुर्थांष $) =$
यदि $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ तो $x + y + z = $
$\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ का मान होगा
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $