$\cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right) \text { का मान }$ है

  • [JEE MAIN 2020]
  • A

    $\frac{1}{4}$

  • B

    $\frac{1}{\sqrt{2}}$

  • C

    $\frac{1}{2\sqrt{2}}$

  • D

    $\frac{1}{2}$

Similar Questions

यदि $cos A = {3\over 4} , $ तब $32\sin \left( {\frac{A}{2}} \right)\sin \left( {\frac{{5A}}{2}} \right) = $

$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $

  • [IIT 1974]

यदि $\tan A = \frac{{1 - \cos B}}{{\sin B}},$ तो $\tan 2A$ को $\tan B$ के पदों में निकालिए और दिखलाइए कि

  • [IIT 1983]

$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $

$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$  बराबर है

  • [JEE MAIN 2023]