The value of $ \cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)$ is 

  • [JEE MAIN 2020]
  • A

    $\frac{1}{4}$

  • B

    $\frac{1}{\sqrt{2}}$

  • C

    $\frac{1}{2\sqrt{2}}$

  • D

    $\frac{1}{2}$

Similar Questions

If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is

  • [IIT 1993]

If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to

If $3\cos \theta  + 4\sin \theta  = 5$ then $3\sin \theta  - 4\cos \theta $ is

If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always

If $A + B + C = \pi ,$ then $\cos \,\,2A + \cos \,\,2B + \cos \,\,2C = $