The true set of values of $‘a’$ for which the inequality $\int\limits_a^0 {} (3^{ -2x} - 2. 3^{-x})\, dx \geq 0$ is true is:
$[0 , 1]$
$(-\infty , - 1]$
$[0, \infty )$
$(-\infty , - 1] \cup [0, \infty )$
Suppose $f(x)$ is a differentiable real function such that $f(x) + f'(x) \le 1$ for all $x$ and $f(0)=0$ . The largest possible value of $f(1)$ is
If $\int_{}^{} {f(x)\,dx} = x{e^{ - \log |x|}} + f(x),$ then $f(x)$ is
$\int\limits_{ - 1}^{\frac{3}{2}} {|x\sin \pi x|dx} $ equals
Let $f: R \rightarrow R$ be a function defined as $f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in R$, where [t] is the greatest integer less than or equal to $t$. If $\lim _{x \rightarrow-1} f(x)$ exists, then the value of $\int_{0}^{4} f(x) d x$ is equal to.