The true set of values of $‘a’$ for which the inequality $\int\limits_a^0 {} (3^{ -2x} - 2. 3^{-x})\, dx \geq 0$ is true is:

  • A

    $[0 , 1]$

  • B

    $(-\infty , - 1]$

  • C

    $[0, \infty )$

  • D

    $(-\infty , - 1] \cup [0, \infty )$

Similar Questions

If $f (x) = \int\limits_0^\pi  {\frac{{t\,\sin t\,dt}}{{\sqrt {1 + {{\tan }^2}x\,\,\,{{\sin }^2}t} }}\,} $  for $0 < x < \frac{\pi }{2}\,$

Suppose $f(x)$ is a differentiable real function such that $f(x) + f'(x) \le 1$ for all $x$ and $f(0)=0$ . The largest possible value of $f(1)$ is

If $\int_{}^{} {f(x)\,dx} = x{e^{ - \log |x|}} + f(x),$ then $f(x)$ is

$\int\limits_{ - 1}^{\frac{3}{2}} {|x\sin \pi x|dx} $ equals

Let $f: R \rightarrow R$ be a function defined as $f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in R$, where [t] is the greatest integer less than or equal to $t$. If $\lim _{x \rightarrow-1} f(x)$ exists, then the value of $\int_{0}^{4} f(x) d x$ is equal to.

  • [JEE MAIN 2022]