The triangle formed by ${x^2} - 9{y^2} = 0$ and $x = 4$ is
Isosceles
Equilateral
Right angled
None of these
Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x -2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line
If $P = (1, 0) ; Q = (-1, 0) \,\,ane\,\, R = (2, 0)$ are three given points, then the locus of the points $S$ satisfying the relation, $SQ^2 + SR^2 = 2 SP^2$ is :
If in triangle $ABC$ ,$ A \equiv (1, 10) $, circumcentre $\equiv$ $\left( { - \,\,{\textstyle{1 \over 3}}\,\,,\,\,{\textstyle{2 \over 3}}} \right)$ and orthocentre $\equiv$ $\left( {{\textstyle{{11} \over 3}}\,\,,\,\,{\textstyle{4 \over 3}}} \right)$ then the co-ordinates of mid-point of side opposite to $A$ is :
A straight the through a fixed point $(2, 3)$ intersects the coordinate axes at distinct points $P$ and $Q.$ If $O$ is the origin and the rectangle $OPRQ$ is completed, then the locus of $R$ is:
The pair of straight lines $x^2 - 4xy + y^2 = 0$ together with the line $x + y + 4 = 0$ form a triangle which is :