સ્પ્રિંગ સાથે લટકાવેલ દળનો આવર્તકાળ $T$ છે. જો સ્પ્રિંગને ચાર સમાન ભાગોમાં કાપવામાં આવે અને તે સમાન દળને એક ભાગ સાથે લટકાવવામાં આવે, તો નવો આવર્તકાળ કેટલો થાય?
$T $
$ \frac{T}{2} $
$2 T$
$ \frac{T}{4} $
આકૃતિમાં દર્શાવ્યા મુજબ શિરોલંબ ગોઠવેલ સ્પ્રિંગ પર હલકા સપાટ પાટિયા પર $2\; kg$ દળનો પદાર્થ મૂકેલો છે. સ્પ્રિંગ અને પાટિયાનું દળ અવગણ્ય છે. સ્પ્રિંગને થોડી દબાવીને છોડી દેતાં તે સરળ આવર્ત ગતિ કરે છે. સ્પ્રિંગનો બળ અચળાંક $200\; N/m$ છે. આ દોલનનો ઓછામાં ઓછો કંપવિસ્તાર કેટલો હોવો જોઇએ જેથી પદાર્થ એ પાટિયા પરથી છૂટો પડી જાય? ($g=10 m/s^2$ લો)
k બળ અચળાંક ધરાવતી સ્પ્રિગ સાથે દળ $m$ જોડવામાં આવેલ છે અને તે મુજબ સપાટી જોડેલ છે.અને તે આકૃતિ મુજબ સપાટી જોડેલ બીજી સ્પ્રિંગને અડે છે. નાના દોલનોનો આવર્તકાળ કેટલો થાય?
દળરહિત સ્પ્રિંગ સાથે $M$ દળ લગાવીને દોલનો કરાવતા આવર્તકાળ $T$ મળે છે. જ્યારે તેની સાથે ફરીથી $M$ દળ લગાવવામાં આવે તો આવર્તકાળ કેટલો થાય?
આકૃતિનાં દર્શાવ્યા મુજબની જ પૃથ્વીની સપાટીને સમક્ષિતિજ રહે તેમ ગોઠવવામાં આવેલ છે. આ સ્થિતિમાં સ્પ્રિંગો પર કોઈ તણાવ નથી સામાન્ય સ્થિતિમાં છે. જો ડાબી તરફનું દળ ડાબી તરફ અને જમણી તરફનું દળ જમણી તરફ સરખા અંતેર ખેંચીને છોડવામાં આવે છે. જો પરિણામી અથડામણ સ્થિતિ સ્થાપક હોય તો આ પ્રણાલીના દોલનોનો આવર્તકાળ કેટલો હશે ?
નીચેના કિસ્સામાં પુનઃ સ્થાપક બળ કોણ પૂરું પાડે છે ?
$1)$ દબાયેલી સ્પ્રિંગને દોલન કરી શકે તેમ મુક્ત કરતાં.
$2)$ $U-$ ટયૂબમાં પાણીનું સ્થાનાંતર કરતાં,
$3)$ મધ્યમાન સ્થાનથી લોલકના ગોળાને સ્થાનાંતરિત કરતાં...