આકૃતિનાં દર્શાવ્યા મુજબની જ પૃથ્વીની સપાટીને સમક્ષિતિજ રહે તેમ ગોઠવવામાં આવેલ છે. આ સ્થિતિમાં સ્પ્રિંગો પર કોઈ તણાવ નથી સામાન્ય સ્થિતિમાં છે. જો ડાબી તરફનું દળ ડાબી તરફ અને જમણી તરફનું દળ જમણી તરફ સરખા અંતેર ખેંચીને છોડવામાં આવે છે. જો પરિણામી અથડામણ સ્થિતિ સ્થાપક હોય તો આ પ્રણાલીના દોલનોનો આવર્તકાળ કેટલો હશે ?
$2 \pi \sqrt{\frac{2 m}{k}}$
$2 \pi \sqrt{\frac{m}{2 k}}$
$\pi \sqrt{\frac{m}{k}}$
$2 \pi \sqrt{\frac{m}{k}}$
બાજુની આકૃતિમાં દર્શાવ્યા મુજબ, જો કોઈ લીસા ઢાળ પર સરખી સ્પ્રિંગોથી કોઈ દળ ગોઠવેલું હોય તો આ દોલન કરતા તંત્રનો આવર્તકાળ કેટલો થશે ?
$L$ લંબાઈ, $M$ દળ અને $A$ આડછેદ ધરાવતા નળાકારને દળરહિત સ્પ્રિંગ સાથે બાંધીને એવી રીતે લટકવવામાં આવે છે કે જેથી સમતોલન સમયે અડધું નળાકાર $\sigma$ ઘનતાવાળા પ્રવાહીમાં ડૂબેલું રહે.જ્યારે નળાકારને નીચે તરફ થોડું ખેંચીને મુક્ત કરવામાં આવે ત્યારે તે નાના કંપવિસ્તારથી દોલનો કરે છે.નળાકારના દોલનો માટેનો આવર્તકાળ $T$ કેટલો મળે?
$2\,kg$ દળ ધરાવતા બ્લોકને $20\,N / m$ સ્પ્રિંગ અચળાંક ધરાવતી બે સમાન સ્પ્રિંગ સાથે જોડવામાં આવે છે. બ્લોકને ધર્ષણ રહિત સપાટી પર મૂકવામાં આવે છે અને સ્પ્રિંગના છેડાને જડ આધાર સાથે લગાડવામાં આવે છે. (આકૃતિમાં જુઓ).જ્યારે દળને સંતુલન સ્થિતિમાંથી સ્થાનાંતરિત કરવામાં આવે ત્યારે તે સરળ આવર્ત ગતિ કરે છે. દોલનોનો આવર્ત કાળ $\frac{\pi}{\sqrt{x}}$ છે. તો $x$ નું મૂલ્ય $...........$ છે.
$x=0$ ની આસપાસ $0.01 \;kg$ દળ ધરાવતો પદાર્થ નીચે દર્શાવેલ આકૃતિ મુજબ ગતિ કરે છે. આ સરળ આવર્ત ગતિનો આવર્તકાળ શોધો.
કોઈ એક સ્પ્રિંગ સાથે જોડાયેલ દ્રવ્યમાન સમક્ષિતિજ સમતલમાં કોણીય વેગ $\omega $ સાથે ઘર્ષણ કે અવમંદનરહિત દોલનો માટે મુક્ત છે. તેને $t = 0 $ એ, $x_0$ અંતર સુધી ખેંચવામાં આવે છે અને કેન્દ્ર તરફ $v_0$ , વેગથી ધક્કો મારવામાં આવે છે. પ્રાચલો , $\omega ,x-0$ અને $v_0$ નાં પદમાં પરિણામી દોલનોના કંપવિસ્તાર નક્કી કરો. (સૂચન : સમીકરણ $x = a\, cos\,(\omega t + \theta )$ સાથે શરૂઆત કરો અને નોંધ કરો કે, પ્રારંભિક વેગ ઋણ છે.)