આકૃતિમાં દર્શાવ્યા મુજબ શિરોલંબ ગોઠવેલ સ્પ્રિંગ પર હલકા સપાટ પાટિયા પર $2\; kg$ દળનો પદાર્થ મૂકેલો છે. સ્પ્રિંગ અને પાટિયાનું દળ અવગણ્ય છે. સ્પ્રિંગને થોડી દબાવીને છોડી દેતાં તે સરળ આવર્ત ગતિ કરે છે. સ્પ્રિંગનો બળ અચળાંક $200\; N/m$ છે. આ દોલનનો ઓછામાં ઓછો કંપવિસ્તાર કેટલો હોવો જોઇએ જેથી પદાર્થ એ પાટિયા પરથી છૂટો પડી જાય? ($g=10 m/s^2$ લો)
$10\,\,cm$
$12 \,\,cm$ થી નાનું કોઇ પણ મૂલ્ય
$4\,\, cm$
$8 \,\,cm$
બે સ્પ્રિંગને શ્રેણીમાં જોડીને તેના પર $m$ દળ લટકાવેલ છે. સ્પ્રિંગના બળ અચળાંક $K_1$ અને $K_2$ છે. લટકાવેલ દળનો આવર્તકાળ કેટલો થશે?
સમક્ષિતિજ ગોઠવેલી સ્પ્રિંગ બ્લોક પ્રણાલીનો આવર્તકાળ $T$ છે. હવે સ્પ્રિંગને ચોથા ભાગની કાપીનો ફરી બ્લોક ઊર્ધ્વતલમાં જોડવામાં આવે છે. તો એના ઊર્ધ્વતલમાં થતાં દોલનનો આવર્તકાળ કેટલો થશે ?
$K_1$ અને $K_2$ બળઅચળાંક ઘરાવતી અલગ અલગ સ્પ્રિંગ પર $m$ દળ લટકાવતા આવર્તકાળ અનુક્રમે $t_1$ અને $t_2$ થાય છે. જો આકૃતિમાં દર્શાવ્યા પ્રમાણે સમાન દળ $m$ ને બંને સ્પ્રિંગ સાથે લટકવવામાં આવે, તો આવર્તકાળ $t$ ને કયા સંબંધ દ્વારા આપી શકાય?
અવગણ્ય દળ ધરાવતી સ્પ્રિંગ સાથે $M$ દળ લટકાવેલ છે. જ્યારે તેને ખોદુક ખેચીને મુક્ત કરવામાં આવે ત્યારે તે $T$ આવર્તકાળવાળી સરળ આવર્તગતિ કરે છે.જો દળમાં $m$ નો વઘારો કરવામાં આવે છે, તો આવર્તકાળ $ \frac{{5T}}{3} $ થાય છે,તો $ \frac{m}{M} $નો ગુણોત્તર કેટલો હશે?
ઘર્ષણરહિત સમક્ષિતિજ સમતલમાં એક $m$ દળનો બ્લોક દળરહિત સ્પ્રિંગ સાથે જોડેલ છે જે $'A'$ કંપવિસ્તારથી આવર્તગતિ કરે છે. જ્યારે તે સમતોલન સ્થાનેથી પસાર થાય ત્યારે તેમાંથી અડધું દળ છૂટું પડી જાય છે. બાકી રહેલ તંત્ર $fA$ જેટલા કંપવિસ્તારથી ગતિ કરે છે. તો $f$ નું મૂલ્ય કેટલું હશે?