The sums of $n$ terms of two arithmatic series are in the ratio $2n + 3:6n + 5$, then the ratio of their ${13^{th}}$ terms is
$53 : 155$
$27 : 77$
$29 : 83$
$31 : 89$
The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be
The number of $5 -$tuples $(a, b, c, d, e)$ of positive integers such that
$I.$ $a, b, c, d, e$ are the measures of angles of a convex pentagon in degrees
$II$. $a \leq b \leq c \leq d \leq e$
$III.$ $a, b, c, d, e$ are in arithmetic progression is
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n(n+2)$
If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in
Let $a_1=8, a_2, a_3, \ldots a_n$ be an $A.P.$ If the sum of its first four terms is $50$ and the sum of its last four terms is $170$ , then the product of its middle two terms is