The ratio of sum of $m$ and $n$ terms of an $A.P.$ is ${m^2}:{n^2}$, then the ratio of ${m^{th}}$ and ${n^{th}}$ term will be

  • A

    $\frac{{m - 1}}{{n - 1}}$

  • B

    $\frac{{n - 1}}{{m - 1}}$

  • C

    $\frac{{2m - 1}}{{2n - 1}}$

  • D

    $\frac{{2n - 1}}{{2m - 1}}$

Similar Questions

Let $s _1, s _2, s _3, \ldots \ldots, s _{10}$ respectively be the sum to 12 terms of 10 A.P.s whose first terms are $1,2,3, \ldots, 10$ and the common differences are $1,3,5, \ldots, 19$ respectively. Then $\sum \limits_{i=1}^{10} s _{ i }$ is equal to

  • [JEE MAIN 2023]

The number of terms in the series $101 + 99 + 97 + ..... + 47$ is

If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be

The roots of the quadratic equation $3 x ^2- px + q =0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first $11$ terms of this arithmetic progression is $88$ , then $q-2 p$ is equal to_______

  • [JEE MAIN 2025]

Four numbers are in arithmetic progression. The sum of first and last term is $8$ and the product of both middle terms is $15$. The least number of the series is