If ${C_r}$ stands for $^n{C_r}$, the sum of the given series $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$, Where $n$ is an even positive integer, is
$0$
${( - 1)^{n/2}}(n + 1)$
${( - 1)^n}(n + 2)$
${( - 1)^{n/2}}(n + 2)$
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then ${C_0}{C_2} + {C_1}{C_3} + {C_2}{C_4} + {C_{n - 2}}{C_n}$ equals
Let $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !}$. Then the sum $\frac{1}{2^{10}} \sum \limits_{ k =0}^{10}\left(\frac{10}{ k }\right) k ^2$, lies in the interval
Let $C _{ r }$ denote the binomial coefficient of $x ^{ r }$ in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots$ upto $10$ terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left( C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .\right.$ upto 10 terms $)$ then the value of $\alpha+\beta$ is equal to
If ${(1 + x - 2{x^2})^6} = 1 + {a_1}x + {a_2}{x^2} + .... + {a_{12}}{x^{12}}$, then the expression ${a_2} + {a_4} + {a_6} + .... + {a_{12}}$ has the value
The number $111......1 $ ( $ 91$ times) is