જો ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ અને $B_n \,= 1 - A_n$ હોય તો $p$ ની ન્યુનત્તમ અયુગ્મ કિમત મેળવો કે જેથી બધા $n \geq p$ ${B_n} > {A_n}$ માટે થાય
$5$
$7$
$11$
$9$
એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ $50$ પૈસા આવે છે, તો $8$ મી વખત પત્ર મોકલવાનો ખર્ચ શોધો.
જો $a $ અને $b$ વચ્ચેના સમગુણોત્તર મધ્યક $H$ હોય, તો $\frac{1}{{H\, - \,a}}\, + \,\frac{1}{{H - b}}$ નું મૂલ્ય કેટલું થાય ?
જો સામાન્ય ગુણોત્તર $r (r>1)$ વાળી એક ગુણોત્તર શ્રેણી ($G.P.$) ના ત્રણ ક્રમિક પદો , એ એક ત્રિકોણની ત્રણ બાજુઓની લંબાઈઓ છે અને $[\mathrm{r}]$ એ $\mathrm{r}$ કે તેથી નાનો હોય તેવો મહત્તમ પૂણાંક દર્શાવે છે, તો $3[\mathrm{r}]+[-\mathrm{r}]=$___________.
શ્રેણી $\quad 2,2 \sqrt{2}, 4, \ldots$ નું કેટલામું પદ $128$ થાય ?
$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ?