ગણ $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$  $n$ અને $2040$ નો ગુ.સા.અ  $1$ થાય  $\,\}$ ના બધાજ ઘટકોનો સરવાળો મેળવો.

  • [JEE MAIN 2021]
  • A

    $1251$

  • B

    $1300$

  • C

    $1456$

  • D

    $1371$

Similar Questions

સમાંતર શ્રેણી $3,8,13, \ldots, 373$ માં $3$ વડે વિભાજય ન હોય તેવા તમામ પદોનો સરવાળો $..........$ છે.

  • [JEE MAIN 2023]

જો શ્રેણીના પહેલા $n$ પદોનો સરવાળો $An^2 + Bn$ સ્વરૂપમાં હોય જ્યાં $A, B$ એ $n$ ના નિરપેક્ષ અચળ છે, તો ........ શ્રેણી છે.

ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.

  • [JEE MAIN 2022]

શ્રેણીઓ $S _1=3+7+11+15+19+\ldots$ અને $S _2=1+6+11+16+21+\ldots$ નું સામાન્ય $8$મું પદ $............$ છે.

  • [JEE MAIN 2023]

ધારો કે $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$ એ ધન પદોવાળી સમાંતર શ્રેણી છે. ધારોકે

$A_k=a_1^2-a_2^2+a_3^2-a_4^2+\ldots+a_{2 k-1}^2-a_{2 k}^2$ .

જો $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ અને $\mathrm{a}_1^2+\mathrm{a}_2^2+\mathrm{a}_3^2=66$ હોય, તો $\mathrm{a}_{17}-\mathrm{A}_7=$............

  • [JEE MAIN 2024]