Find the mean, variance and standard deviation using short-cut method

Height in cms $70-75$ $75-80$ $80-85$ $85-90$ $90-95$ $95-100$ $100-105$ $105-110$ $110-115$
No. of children $3$ $4$ $7$ $7$ $15$ $9$ $6$ $6$ $3$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class Interval Frequency ${f_i}$  Mid-point ${f_i}$ ${y_i} = \frac{{{x_i} - 92.5}}{5}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$70-7$ $3$ $72.5$ $-4$ $16$ $-12$ $48$
$75-80$ $4$ $77.5$ $-3$ $9$ $-12$ $36$
$80-85$ $7$ $82.5$ $-2$ $4$ $-14$ $28$
$85-90$ $7$ $87.5$ $-1$ $1$ $-7$ $7$
$90-95$ $15$ $92.5$ $0$ $0$ $0$ $0$
$95-100$ $9$ $97.5$ $1$ $1$ $9$ $9$
$100-105$ $6$ $102.5$ $2$ $4$ $12$ $24$
$105-110$ $6$ $107.5$ $3$ $9$ $18$ $54$
$110-115$ $3$ $112.5$ $4$ $16$ $12$ $48$
  $60$       $6$ $254$

Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h$

$ = 92.5 + \frac{6}{{60}} \times 5 = 92.5 + 0.5 = 93$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right]$

$=\frac{25}{3600}(15204)=105.58$

$\therefore$ Standard deviation $(\sigma)=\sqrt{105.58}=10.27$

Similar Questions

If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of first four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to

  • [JEE MAIN 2024]

If the mean and the variance of $6,4, a, 8, b, 12,10, 13$ are $9$ and $9.25$ respectively, then $a+b+a b$ is equal to :

  • [JEE MAIN 2025]

Let $X$ be a random variable, and let $P(X=x)$ denote the probability that $X$ takes the value $x$. Suppose that the points $(x, P(X=x)), x=0,1,2,3,4$, lie on a fixed straight line in the $x y$-plane, and $P(X=x)=0$ for all $x \in R$ $\{0,1,2,3,4\}$. If the mean of $X$ is $\frac{5}{2}$, and the variance of $X$ is $\alpha$, then the value of $24 \alpha$ is. . . . .

  • [IIT 2024]

If $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ and $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ then the standard deviation of the $9$ items  ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ is :

  • [JEE MAIN 2018]

The $S.D$ of $15$ items is $6$ and if each item is decreased or increased by $1$, then standard deviation will be