Find the mean, variance and standard deviation using short-cut method
Height in cms | $70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
No. of children | $3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
Class Interval | Frequency ${f_i}$ | Mid-point ${f_i}$ | ${y_i} = \frac{{{x_i} - 92.5}}{5}$ | ${y_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$70-7$ | $3$ | $72.5$ | $-4$ | $16$ | $-12$ | $48$ |
$75-80$ | $4$ | $77.5$ | $-3$ | $9$ | $-12$ | $36$ |
$80-85$ | $7$ | $82.5$ | $-2$ | $4$ | $-14$ | $28$ |
$85-90$ | $7$ | $87.5$ | $-1$ | $1$ | $-7$ | $7$ |
$90-95$ | $15$ | $92.5$ | $0$ | $0$ | $0$ | $0$ |
$95-100$ | $9$ | $97.5$ | $1$ | $1$ | $9$ | $9$ |
$100-105$ | $6$ | $102.5$ | $2$ | $4$ | $12$ | $24$ |
$105-110$ | $6$ | $107.5$ | $3$ | $9$ | $18$ | $54$ |
$110-115$ | $3$ | $112.5$ | $4$ | $16$ | $12$ | $48$ |
$60$ | $6$ | $254$ |
Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^9 {{f_i}{y_i}} }}{N} \times h$
$ = 92.5 + \frac{6}{{60}} \times 5 = 92.5 + 0.5 = 93$
Variance, $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^9 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^9 {{f_i}{y_i}} } \right)}^2}} } \right]$
$=\frac{(5)^{2}}{(60)^{2}}\left[60 \times 254-(6)^{2}\right]$
$=\frac{25}{3600}(15204)=105.58$
$\therefore$ Standard deviation $(\sigma)=\sqrt{105.58}=10.27$
If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of first four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to
Let $X$ be a random variable, and let $P(X=x)$ denote the probability that $X$ takes the value $x$. Suppose that the points $(x, P(X=x)), x=0,1,2,3,4$, lie on a fixed straight line in the $x y$-plane, and $P(X=x)=0$ for all $x \in R$ $\{0,1,2,3,4\}$. If the mean of $X$ is $\frac{5}{2}$, and the variance of $X$ is $\alpha$, then the value of $24 \alpha$ is. . . . .
If $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ and $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ then the standard deviation of the $9$ items ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ is :
The $S.D$ of $15$ items is $6$ and if each item is decreased or increased by $1$, then standard deviation will be