Let $y_1$ , $y_2$ , $y_3$ ,..... $y_n$ be $n$ observations. Let ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ where $l$ , $k$ are constants. If the mean of $y_i's$ is is $48$ and their standard deviation is $12$ , then mean of $w_i's$ is $55$ and standard deviation of $w_i's$ is $15$ , then values of $l$ and $k$ should be
$l = 2.5, k = 5$
$l = 1.25, k = 5$
$l = 1.25, k = -5$
$l = 2.5, k = -5$
If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-
If the mean of the frequency distribution
Class: | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
Frequency | $2$ | $3$ | $x$ | $5$ | $4$ |
is $28$ , then its variance is $........$.
Let $v_1 =$ variance of $\{13, 1 6, 1 9, . . . . . , 103\}$ and $v_2 =$ variance of $\{20, 26, 32, . . . . . , 200\}$, then $v_1 : v_2$ is
If $\sum_{i=1}^{5}(x_i-10)=5$ and $\sum_{i=1}^{5}(x_i-10)^2=5$ then standard deviation of observations $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ and $2x_5 + 7$ is equal to-