The solutions of the quadratic equation ${(3|x| - 3)^2} = |x| + 7$ which belongs to the domain of definition of the function $y = \sqrt {x(x - 3)} $ are given by

  • A

    $ \pm 1/9,\; \pm 2$

  • B

    $ - 1/9,\;2$

  • C

    $1/9,\; - 2$

  • D

    $ - 1/9,\; - 2$

Similar Questions

Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to

  • [KVPY 2013]

Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if

  • [KVPY 2012]

If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $

Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:

  • [JEE MAIN 2021]

Consider the cubic equation $x^3+c x^2+b x+c=0$ where $a, b, c$ are real numbers. Which of the following statements is correct?

  • [KVPY 2011]