Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to
$152$
$153$
$154$
$155$
The number of real solutions of the equation $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ is..........
The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies
The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are
The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is
lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation