The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ is

  • A

    $\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{5\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$

  • B

    $\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{7\pi }}{{12}}\,\,,\,\,\frac{{17\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$

  • C

    $\left\{ {\,\,\frac{{5\pi }}{{12}}\,\,,\,\,\frac{{13\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}} \right\}$

  • D

    $\left\{ {\frac{\pi }{{12}}\,\,,\,\,\frac{{7\pi }}{{12}}\,\,,\,\,\frac{{19\pi }}{{12}}\,\,,\,\,\frac{{23\pi }}{{12}}} \right\}$

Similar Questions

The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is

If $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ then $\theta = $

The number of solutions of the equation $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ is :

  • [JEE MAIN 2021]

The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is

If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)