The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :
$(-\infty , 2)$
$[2, 6]$
$(6, \infty )$
$(-\infty, \infty )$
If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is
The general solution of the equation $sin^{100}x\,-\,cos^{100} x= 1$ is
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are
The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$