The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:

  • [JEE MAIN 2014]
  • A

    $(12, 32)$

  • B

    $(18, 42)$

  • C

    $(12, 24)$

  • D

    $(18, 48)$

Similar Questions

The value of $'c'$ for which the set, $\{(x, y) | x^2 + y^2 + 2x \le 1 \} \cap \{(x, y) | x - y + c \ge 0\}$ contains only one point in common is :

If the line $x\, cos \theta + y\, sin \theta = 2$ is the equation of a transverse common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6 \sqrt{3} \,x - 6y + 20 = 0$, then the value of $\theta$ is :

The number of common tangents to two circles ${x^2} + {y^2} = 4$ and ${x^2} - {y^2} - 8x + 12 = 0$ is

The equation of a circle passing through origin and co-axial to circles ${x^2} + {y^2} = {a^2}$ and ${x^2} + {y^2} + 2ax = 2{a^2},$ is

The line $L$ passes through the points of intersection of the circles ${x^2} + {y^2} = 25$ and ${x^2} + {y^2} - 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line $L$, is