The set of all $a \in R$ for which the equation $x | x -1|+| x +2|+a=0$ has exactly one real root is:
$(-6,-3)$
$(-\infty, \infty)$
$(-6, \infty)$
$(-\infty,-3)$
Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to
Suppose $a$ is a positive real number such that $a^5-a^3+a=2$. Then,
The sum of all integral values of $\mathrm{k}(\mathrm{k} \neq 0$ ) for which the equation $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ in $x$ has no real roots, is ..... .
The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$