Number of rational roots of equation $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ is equal to

  • A

    $0$

  • B

    $1008$

  • C

    $2015$

  • D

    $2016$

Similar Questions

If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always

  • [IIT 1979]

The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are

  • [IIT 1982]

The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.

  • [KVPY 2021]

Number of natural solutions of the equation $xyz = 2^5 \times 3^2 \times  5^2$ is equal to

Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$

  • [JEE MAIN 2022]