Suppose $a$ is a positive real number such that $a^5-a^3+a=2$. Then,
$a^6 < 2$
$2 < a^6 < 3$
$3 < a^6 < 4$
$4 \leq a^6$
Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :
The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies
The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........