For which of the following ordered pairs $(\mu, \delta)$ the system of linear equations $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ is inconsistent?
$(1,0)$
$(4,6)$
$(3,4)$
$(4,3)$
If $n \ne 3k$ and 1, $\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ has the value
Let the area of the triangle with vertices $A (1, \alpha)$, $B (\alpha, 0)$ and $C (0, \alpha)$ be $4\, sq.$ units. If the point $(\alpha,-\alpha),(-\alpha, \alpha)$ and $\left(\alpha^{2}, \beta\right)$ are collinear, then $\beta$ is equal to
Let $a_1,a_2,a_3,....,a_{10}$ be in $G.P.$ with $a_i > 0$ for $i = 1, 2,....,10$ and $S$ be the set of pairs $(r,k), r, k \in N$ (the set of natural numbers) for which
$\left| {\begin{array}{*{20}{c}}
{{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\
{{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\
{{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k}
\end{array}} \right| = 0$
Then the number of elements in $S$, is
The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if
The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is