Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .
$10$
$20$
$30$
$40$
If $x$ is real, then the maximum and minimum values of expression $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ will be
If $72^x \cdot 48^y=6^{x y}$, where $x$ and $y$ are non-zero rational numbers, then $x+y$ equals
Let $\alpha$ and $\beta$ be the roots of the equation $5 x^{2}+6 x-2=0 .$ If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ then :
The polynomial equation $x^3-3 a x^2+\left(27 a^2+9\right) x+2016=0$ has
If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then