If $x$ is real and $k = \frac{{{x^2} - x + 1}}{{{x^2} + x + 1}},$ then
$\frac{1}{3} \le k \le 3$
$k \ge 5$
$k \le 0$
None of these
Suppose $a, b, c$ are three distinct real numbers, let $P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$ When simplified, $P(x)$ becomes
If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be
If $a, b, c \in R$ and $1$ is a root of equation $ax^2 + bx + c = 0$, then the curve y $= 4ax^2 + 3bx+ 2c, a \ne 0$ intersect $x-$ axis at
If the sum of all the roots of the equation $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ is $\log _{ e } P$, then $p$ is equal to
If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by