$\theta$ ની કઈ વાસ્તવિક કિમતો માટે સમીકરણ  $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ ની કિમત વાસ્તવિક કિમત થાય  $\left( {n \in I} \right)$ 

  • A

    $\left( {2n + 1} \right)\pi $

  • B

    $\left( {2n + 1} \right)\pi /2$

  • C

    $2n\,\,\pi $

  • D

    એક પણ નહી 

Similar Questions

જો $z$ અને $w$ બે સંકર સંખ્યા છે કે જેથી $|z|\, = \,|w|$ અને $arg\,z + arg\,w = \pi $. તો $z$ મેળવો.

  • [AIEEE 2002]

જો $|z|\, = 1$ અને $\omega = \frac{{z - 1}}{{z + 1}}$ (કે જ્યાં $z \ne - 1)$, તો ${\mathop{\rm Re}\nolimits} (\omega )$= . . .

  • [IIT 2003]

જો $arg\,(z) = \theta $, તો $arg\,(\overline z ) = $

જો $z$ શુદ્ધ વાસ્તવિક સંખ્યા છે કે જેથી ${\mathop{\rm Re}\nolimits} (z) < 0$, તો $arg(z)$ = . . .. .

જો $|z|\, = 1,(z \ne - 1)$ અને $z = x + iy$ તો $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ =. . .