If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then
$x = y = z = a/3$
$x + y + z = a/3$
$x + y + z = 0$
None of these
${a^{m{{\log }_a}n}} = $
$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is