If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

  • A

    $x = y = z = a/3$

  • B

    $x + y + z = a/3$

  • C

    $x + y + z = 0$

  • D

    None of these

Similar Questions

${a^{m{{\log }_a}n}} = $

$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

If $x + \sqrt {({x^2} + 1)} = a,$ then $x =$

The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is