If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

  • A

    $x = y = z = a/3$

  • B

    $x + y + z = a/3$

  • C

    $x + y + z = 0$

  • D

    None of these

Similar Questions

${a^{m{{\log }_a}n}} = $

${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $

Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are

If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$

If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $