If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

  • A

    $x = y = z = a/3$

  • B

    $x + y + z = a/3$

  • C

    $x + y + z = 0$

  • D

    None of these

Similar Questions

$\sqrt {(3 + \sqrt 5 )} $ is equal to

${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$

${a^{m{{\log }_a}n}} = $