If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then
$x = y = z = a/3$
$x + y + z = a/3$
$x + y + z = 0$
None of these
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is