If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then
$x = y = z = a/3$
$x + y + z = a/3$
$x + y + z = 0$
None of these
$\sqrt {(3 + \sqrt 5 )} $ is equal to
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
${a^{m{{\log }_a}n}} = $