The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is

  • [AIEEE 2004]
  • A

    $\{1, 2, 3, 4, 5\}$

  • B

    $\{1, 2, 3, 4, 5, 6\}$

  • C

    $\{1, 2, 3, 4\}$

  • D

    $\{1, 2, 3\}$

Similar Questions

The domain of ${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ is

  • [AIEEE 2002]

Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is

  • [JEE MAIN 2019]

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to

If $f (x) =$ $\left[ \begin{gathered}  {x^2}\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x \leqslant \,{x_0} \hfill \\   ax + b\,\,\,\,\,if\,\,\,\,x\, > \,{x_0} \hfill \\ \end{gathered}  \right.$ derivable $\forall \,x\, \in \,R\,\,$ then the values of $a$ and $b$ are respectively

Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?

  • [KVPY 2013]