Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is

  • [JEE MAIN 2019]
  • A

    $\left[ { - \frac{1}{2},\frac{1}{2}} \right]$

  • B

    $R\, - [ - 1,1]$

  • C

    $R - \left[ { - \frac{1}{2},\frac{1}{2}} \right]$

  • D

    $( - 1,1) - \{ 0\} $

Similar Questions

Let $S=\{1,2,3,4\}$. Then the number of elements in the set $\{f: S \times S \rightarrow S: f$ is onto and $f(a, b)=f(b, a)$ $\geq a; \forall(a, b) \in S \times S\}$ is

  • [JEE MAIN 2022]

Tho damnin of tho finction $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ is

  • [JEE MAIN 2022]

Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(1)+\mathrm{f}(3)=14$, is :

  • [JEE MAIN 2024]

Let $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ and $m(b)$ the minimum value of $f(x)$ for a given $b$. As $b$ varies, the range of $m(b)$ is

  • [IIT 2001]

Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^2\right)=f\left(x^3\right)$ for all $x \in R$. Consider the following statements.

$I.$ $f$ is an odd function.

$II.$ $f$ is an even function.

$III$. $f$ is differentiable everywhere. Then,

  • [KVPY 2019]