If $f (x) =$ $\left[ \begin{gathered}  {x^2}\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x \leqslant \,{x_0} \hfill \\   ax + b\,\,\,\,\,if\,\,\,\,x\, > \,{x_0} \hfill \\ \end{gathered}  \right.$ derivable $\forall \,x\, \in \,R\,\,$ then the values of $a$ and $b$ are respectively

  • A
    $2x_0 , - $ $x_0^2\,$
  • B
    $- x_0 , 2 $ $x_0^2\,$
  • C
    $- 2x_0 , -$ $x_0^2\,$
  • D
    $2x_0^2\,$ , $- x_0$

Similar Questions

If $f(x) = \sin \log x$, then the value of $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ is equal to

Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for  $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is

  • [AIEEE 2011]

Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.

Which of the following function is surjective but not injective

Show that the function $f: N \rightarrow N$ given by $f(x)=2 x,$ is one-one but not onto.