The range of the function $f(x) = \frac{{x + 2}}{{|x + 2|}}$ is
$\{0, 1\}$
$\{-1, 1\}$
$R$
$R - \{ - 2\} $
If $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ , then the equation $f(x) = 0$ has
Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.
If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$ then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots \ldots . .+f\left(\frac{2022}{2023}\right)$ is equal to
Consider the function $f (x) = x^3 - 8x^2 + 20x -13$
Number of positive integers $x$ for which $f (x)$ is a prime number, is
Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^2\right)=f\left(x^3\right)$ for all $x \in R$. Consider the following statements.
$I.$ $f$ is an odd function.
$II.$ $f$ is an even function.
$III$. $f$ is differentiable everywhere. Then,