Consider the function $f (x) = x^3 - 8x^2 + 20x -13$
Number of positive integers $x$ for which $f (x)$ is a prime number, is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Let $R$ be the set of all real numbers and $f(x)=\sin ^{10} x\left(\cos ^8 x+\cos ^4 x+\cos ^2 x+1\right)$ $x \in R$. Let  $S=\{\lambda \in R$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$ Then,

  • [KVPY 2020]

Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)$ $=\lambda$ and $f (3)=4$. If $f (0)+ f (1)+ f (-2)+ f (3)=14$, then $\lambda$ is equal to$...$

  • [JEE MAIN 2022]

Consider the function $\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ defined by $f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$. Consider the statements

$(I)$ The curve $y=f(x)$ intersects the $x$-axis exactly at one point

$(II)$ The curve $y=f(x)$ intersects the $x$-axis at $\mathrm{x}=\cos \frac{\pi}{12}$

Then

  • [JEE MAIN 2024]

The set of values of $'a'$ for which the inequality ${x^2} - (a + 2)x - (a + 3) < 0$ is satisfied by atleast one positive real $x$ , is

Consider a function $f:\left[ { - 1,1} \right] \to R$ where $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ Where $\alpha _i\ 's$ are positive constants and $n \in N < 100$ , then $f(x)$ is