$f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ का परिसर है
$[0, \pi]$
$[0,2 \pi)$
$[0, \pi)$
$[0,2 \pi]$
फलन $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ का आरेख नीचे दर्शाया गया है. यदि $f_1(x)=f(x)$ और $n \geq$ 1 के लिए $f_{n+1}(x)=f\left(f_n(x)\right)$.
तब निम्न कथनों:
$I$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=0$.
$II$. अनंत $x \in[0,1]$ संभब है यदि $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$.
$III$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=1$.
$IV$. अन्त $x \in[0,1]$ सभव है यदि $\lim _{n \rightarrow \infty} f_n(x)$ का अस्तित्व नहीं है.
में से कौन से कथन सत्य है
माना $f(n)=\left[\frac{1}{3}+\frac{3 n}{100}\right] n$, जहाँ $[n]$ एक महत्तम पूणांक, जो $n$ से छोटा अथवा बराबर है, तो $\sum_{ n =1}^{56} f(u)$ बराबर है
माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______.
$\mathrm{f}(\mathrm{x})=4 \sqrt{2} \mathrm{x}^3-3 \sqrt{2} \mathrm{x}-1$ द्वारा परिभाषित फलन
$\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ के लिए कथनों
($I$) वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-अक्ष को मात्र एक बिंदु पर काटता है
($II$) वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$-अक्ष को $\mathrm{x}=\cos \frac{\pi}{12}$ पर काटता है में से
फलनों $f :\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\}$ जिनके लिए $f(1)+f(2)=f(3)$, है, की कुल संख्या है :