The radius ( $\mathrm{r})$, length $(l)$ and resistance $(\mathrm{R})$ of a metal wire was measured in the laboratory as
$\mathrm{r}=(0.35 \pm 0.05) \mathrm{cm}$
$\mathrm{R}=(100 \pm 10) \mathrm{ohm}$
$l=(15 \pm 0.2) \mathrm{cm}$
The percentage error in resistivity of the material of the wire is :

  • [JEE MAIN 2024]
  • A
    $25.6 \%$
  • B
    $39.9 \%$
  • C
    $37.3 \%$
  • D
    $35.6 \%$

Similar Questions

Measure of two quantities along with the precision of respective measuring instrument  $A = 2.5\,m{s^{ - 1}} \pm 0.5\,m{s^{ - 1}}$, $B = 0.10\,s \pm 0.01\,s$ The value of $AB$ will be

The two specific heat capacities of a gas are measured as $C_P = (12.28 \pm 0.2)\, units$ and $C_V = (3.97 \pm 0.3)\, unit$. Find the value of the gas constant $(R)$

The maximum percentage errors in the measurement of mass $(M)$, radius $(R)$ and angular velocity $(\omega)$ of a ring are $2 \%, 1 \%$ and $1 \%$ respectively, then find the maximum percentage error in the measurement of its angular momentum $(J=I \omega)$ about geometrical axis.

The maximum percentage errors in the measurement of mass (M), radius (R) and angular velocity $(\omega)$ of a ring are $2 \%, 1 \%$ and $1 \%$ respectively, then find the maximum percenta? error in the measurement of its rotational kinetic energy $\left(K=\frac{1}{2} I \omega^{2}\right)$

The percentage errors in the measurement of mass and speed are $2\%$ and $3\%$ respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed  ......... $\%$

  • [AIPMT 1995]